The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus.

نویسندگان

  • Jessica L Banko
  • Francis Poulin
  • Lingfei Hou
  • Christine T DeMaria
  • Nahum Sonenberg
  • Eric Klann
چکیده

Long-lasting synaptic plasticity and memory requires mRNA translation, yet little is known as to how this process is regulated. To explore the role that the translation repressor 4E-BP2 plays in hippocampal long-term potentiation (LTP) and learning and memory, we examined 4E-BP2 knock-out mice. Interestingly, genetic elimination of 4E-BP2 converted early-phase LTP to late-phase LTP (L-LTP) in the Schaffer collateral pathway, likely as a result of increased eIF4F complex formation and translation initiation. A critical limit for activity-induced translation was revealed in the 4E-BP2 knock-out mice because L-LTP elicited by traditional stimulation paradigms was obstructed. Moreover, the 4E-BP2 knock-out mice also exhibited impaired spatial learning and memory and conditioned fear-associative memory deficits. These results suggest a crucial role for proper regulation of the eIF4F complex by 4E-BP2 during LTP and learning and memory in the mouse hippocampus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Isoaspartate Formation Modulates the Interaction of Deamidated 4E-BP2 with mTORC1 in Brain*

In eukaryotes, a rate-limiting step of translation initiation is recognition of the mRNA 5' m(7)GpppN cap structure by the eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting of the cap-binding protein, eIF4E, along with eIF4G, and eIF4A. The eIF4E-binding proteins (4E-BPs) repress translation by disrupting eIF4F formation, thereby preventing ribosome recruitment to the...

متن کامل

Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission.

The eIF4E-binding proteins (4E-BPs) repress translation initiation by preventing eIF4F complex formation. Of the three mammalian 4E-BPs, only 4E-BP2 is enriched in the mammalian brain and plays an important role in synaptic plasticity and learning and memory formation. Here we describe asparagine deamidation as a brain-specific posttranslational modification of 4E-BP2. Deamidation is the sponta...

متن کامل

Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells.

The eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) is a repressor of cap-dependent mRNA translation and a major downstream effector of the mammalian target of rapamycin (mTOR) implicated in hippocampal long-term synaptic plasticity and memory. Yet, synaptic mechanisms regulated by 4E-BP2 translational repression remain unknown. Combining knock-out mice, whole-cell recordings, spine ...

متن کامل

PI3K signaling regulates rapamycin-insensitive translation initiation complex formation in vaccinia virus-infected cells.

How vaccinia virus (VV) regulates assembly of the host translation initiation complex eIF4F remains unclear. Here, we show that VV activated host PI3K to stimulate downstream mammalian target of rapamycin (mTOR), a kinase that inactivates the translational repressor 4E-BP1. However, although the mTOR inhibitor rapamycin suppressed VV-induced inactivation of 4E-BP1, it failed to inhibit eIF4F as...

متن کامل

The translational repressor eIF4E-binding protein 2 (4E-BP2) correlates with selective delayed neuronal death after ischemia.

Transient brain ischemia induces an inhibition of translational rates and causes delayed neuronal death in selective regions and cognitive deficits, whereas these effects do not occur in resistant areas. The translational repressor eukaryotic initiation factor (eIF) 4E-binding protein-2 (4E-BP2) specifically binds to eIF4E and is critical in the control of protein synthesis. To link neuronal de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 42  شماره 

صفحات  -

تاریخ انتشار 2005